Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bao-Shu Liu, ${ }^{\text {a }}$ Feng-Xia Sun, ${ }^{\text {b }}$ Li-Na Zhou, ${ }^{\text {a }}$ Hua Sun ${ }^{\text {a }}$ and Jing-Kang Wang ${ }^{\text {a* }}$

${ }^{\text {a }}$ School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China, and ${ }^{\text {b }}$ College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China

Correspondence e-mail: Ibszrn@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.048$
$w R$ factor $=0.155$
Data-to-parameter ratio $=14.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved
\qquad

3-Benzotriazol-1-yl 5-tert-butyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate

The title compound, $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{6}$, is an important intermediate in the synthesis of nefidipine-type pharmaceuticals. The crystal packing is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

4-Aryl-1,4-dihydropyridine-3,5-dicarboxylic diesters of the nefidipine type have become almost indispensable for the treatment of cardiovascular diseases since they first appeared on the market in 1975 (Yiu \& Knaus, 1999; Goldmann \& Stoltefuss, 1991). The title compound, (I), is a key intermediate for their preparation.

(I)

Fig. 1 shows the structure of the title compound. The molecule contains an aromatic ring, $R 1(\mathrm{C} 13-\mathrm{C} 18)$, a dihydropyridine ring, $R 2$, and a benzotriazole ring system, $R 3$. The dihedral angles for $R 1 / R 2, R 1 / R 3$ and $R 2 / R 3$ are 88.3 (2), 43.4 (2) and 92.3 (2) ${ }^{\circ}$, respectively. This compares well with

Figure 1
A view of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Received 11 November 2005 Accepted 1 December 2005 Online 7 December 2005
the values for nefidipine (Hofmann \& Cimiraglia, 1990; Ramusino \& Varí, 1999).

An intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond links the molecules into infinite chains (Table 1).

Experimental

2,6-Dimethyl-4-(3-nitro-phenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid mono-tert-butyl ester ($491 \mathrm{mg}, 1 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 ml); dicyclohexylcarbodiimide ($206 \mathrm{mg}, 1 \mathrm{mmol}$) and benzo-triazol-1-ol ($135 \mathrm{mg}, 1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ were added to the solution at 278 K . The reaction mixture was stirred at $276-279 \mathrm{~K}$ for a further 10 h . The solvent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed by vacuum evaporation at 293 K . The product was purified by chromatography on a silica gel column (eluted by ethyl acetate and petroleum ether, 1:5) at room temperature with a yield of 92% (450 mg). Suitable crystals were obtained by slow evaporation of a solution in methanol.

Crystal data

$\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{6}$
 $M_{r}=491.50$
 Monoclinic, $P 2_{1} / n$
 $a=10.332$ (2) А
 $b=15.163$ (3) \AA
 $c=16.010$ (3) A
 $\beta=90.96$ (3) ${ }^{\circ}$
 $V=2507.6$ (9) \AA^{3}
 $Z=4$

Data collection

Rigaku R-AXIS RAPID IP area-
detector diffractometer
oscillation scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.965, T_{\text {max }}=0.989$
23558 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.155$
$S=1.01$
4620 reflections
325 parameters
$D_{x}=1.302 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 19215 reflections
$\theta=3.3-25.5^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Rod, yellow
$0.38 \times 0.25 \times 0.11 \mathrm{~mm}$

4620 independent reflections
3165 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.050$
$\theta_{\text {max }}=25.5^{\circ}$
$h=-12 \rightarrow 12$
$k=-18 \rightarrow 18$
$l=-19 \rightarrow 19$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\max }=0.34 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.23 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 D \cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.49	$3.265(3)$	151

Symmetry code: (i) $x-1, y, z$.
H atoms were placed in calculated positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ and $1.5 U_{\text {eq }}$ (methyl C).

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figure 2
The packing of (I).
The authors gratefully acknowledge support from Tianjin University and Hebei University of Science and Technology.

References

Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Goldmann, S. \& Stoltefuss, J. (1991). Angew. Chem. Int. Ed. Engl. 30, 15591578.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Hofmann, H. J. \& Cimiraglia, R. (1990). J. Mol. Struct. (THEOCHEM), 205, 111.

Ramusino, M. C. \& Varí, M. R. (1999). J. Mol. Struct. (THEOCHEM), 492, 257-268.
Rigaku (2004). RAPID-AUTO. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77381, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Yiu, S. H. \& Knaus, E. E. (1999). Drug Dev. Res. 48, 26-37.

